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Abstract

A modified Graetz methodology is applied to investigate the thermal development of forced convection in a parallel

plate channel filled by a saturated porous medium, with walls held at uniform temperature, and with the effects of axial

conduction and viscous dissipation included. The Brinkman model is employed. The analysis leads to expressions for

the local Nusselt number, as a function of the dimensionless longitudinal coordinate and other parameters (Darcy

number, P�eeclet number, Brinkman number).

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Because of the use of hyperporous media in the

cooling of electronic equipment, there has recently been

renewed interest in the problem of forced convection in

a porous medium channel. In their recent survey of the

literature, Nield and Bejan [1] refer to over 30 papers on

this topic, but none of them deals explicitly with the case

of thermal development. This gap in the literature has

been partly filled by Nield et al. [2–4]. In each of these

papers it was assumed that the P�eeclet number was suf-

ficiently large so that longitudinal (axial) conduction

could be neglected. This approximation allows the use of

analysis close to the classical Graetz analysis.

In the present paper the more general case, in which

longitudinal conduction is significant, is treated. The

Graetz analysis in an extended form, as discussed by

Lahjomri et al. [5,6], is followed here. (In [5] are listed 10

analytical papers (and six numerical studies) on the ex-

tended Graetz problem in which a variety of approaches

have been used; we consider the approach used in [5] to

be the most satisfactory analytical approach presented

to date.) We treat the case of a channel confined by

parallel plane walls at which the temperature is held

piecewise constant, with a step at the entrance section.

For the case of the Darcy model, the hydrodynamically

developed velocity profile is that of slug flow, and the

problem is particularly simple, but in this paper we

consider the more complicated flow appropriate to the

Brinkman model.

The incorporation of the effect of axial conduction

requires a major change in approach (because of the

upstream propagation of temperature changes). How-

ever, once this change has been made it is comparatively

simple to incorporate also the effect of viscous dissipa-

tion. This second change results in a homogeneous

differential equation problem being replaced by a non-

homogeneous one.

Previous work on the effects of axial conduction and

viscous dissipation in ducts, in the case of fluids clear of
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solid material, has been surveyed by Shah and Lon-

don [7].

2. Analysis

2.1. Basic equations

For the steady-state hydrodynamically developed

situation we have unidirectional flow in the x�-direction
between impermeable boundaries at y� ¼ �H and y� ¼
H , as illustrated in Fig. 1. For x� > 0 the (downstream)

temperature on each boundary is held constant at the

value T �
w. For x� < 0 the inlet (upsteam) wall tempera-

ture T �
IN is assumed constant on each boundary.

The Brinkman momentum equation is

leff

d2u�

dy�2
� l
K
u� þ G ¼ 0; ð1Þ

where leff is an effective viscosity, l is the fluid viscosity,

K is the permeability, and G is the applied pressure

gradient.

We define dimensionless variables

n ¼ x�

PeH
; g ¼ y�

H
; u ¼ lu�

GH 2
: ð2Þ

Here the P�eeclet number Pe is defined by

Pe ¼ qcpHU �

k
: ð3Þ

The dimensionless form of Eq. (1) is

M
d2u
dg2

� u
Da

þ 1 ¼ 0: ð4Þ

We have defined the viscosity ratio M and the Darcy

number Da by

Nomenclature

An,Bn coefficients defined by Eqs. (24a,b)

Br Brinkman number, defined by Eq. (15)

cp specific heat at constant pressure

d0; d1; d2; d3 constants defined by Eqs. ((30a)–(d))

D function defined by Eqs. (16a)–(16c)

Da Darcy number, K=H 2

fn eigenfunctions for the upstream region

gn eigenfunctions for the downstream region

F function defined by Eqs. (20a)–(20c)

G applied pressure gradient

H half channel width

k fluid thermal conductivity

K permeability

M leff=l
Nu local Nusselt number defined by Eq. (11)

Pe P�eeclet number defined by Eq. (3)

q00 wall heat flux

S ðMDaÞ�1=2

T � temperature

T �
IN inlet wall temperature

T �
m bulk mean temperature

T �
w downstream wall temperature

u lu�=GH 2

u� filtration velocity

ûu u�=U �

U � mean velocity

x� longitudinal coordinate

y� transverse coordinate

Greek symbols

bn eigenvalues for downstream region

n x�=PeH
g y�=H
h T � � T �

w

� �
= T �

IN � T �
w

� �
kn eigenvalues for the upstream region

l fluid viscosity

leff effective viscosity in the Brinkman term

q fluid density

Fig. 1. Definition sketch.
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M ¼ leff

l
; Da ¼ K

H 2
: ð5Þ

The solution of this equation subject to the boundary

condition u ¼ 0 at g ¼ 1, and the symmetry condition

du=dg ¼ 0 at g ¼ 0 is

u ¼ Da 1

�
� cosh Sg

cosh S

�
; ð6Þ

where

S ¼ 1

MDa

� �1=2

: ð7Þ

This parameter is introduced for convenience. It will be

noted that, from now on in the analysis, M and Da
appear only in the combination of M times Da, so that

without loss of generality one can assume that M ¼ 1 in

the presentation of results.

The mean velocity U � and the bulk mean tempera-

ture T �
m are defined by

U � ¼ 1

H

Z H

0

u� dy�; T �
m ¼ 1

HU �

Z H

0

u�T � dy�: ð8Þ

Further dimensionless variables are defined by

ûu ¼ u�

U � ; h ¼ T � � T �
w

T �
IN � T �

w

: ð9Þ

This implies that

ûu ¼ S cosh S � S cosh Sg
S cosh S � sinh S

: ð10Þ

The Nusselt number Nu is defined as

Nu ¼ 2Hq00

kðT �
w � T �

mÞ
: ð11Þ

(The reader should note that we have followed Nield

and Bejan [1] and defined Nu in terms of the channel

width rather than the hydraulic diameter. The Nusselt

number defined in terms of the hydraulic diameter is

twice Nu.)
Local thermal equilibrium is assumed. The steady-

state thermal energy equation is then

qcpu�
oT �

ox�
¼ k

o2T �

ox�2

�
þ o2T �

oy�2

�
þ U; ð12Þ

where U is the contribution due to viscous dissipation.

The modeling of this viscous term is controversial. The

simplest expression, which is appropriate to the Darcy

equation, in the present case is

U ¼ lu�
2

K
: ð13aÞ

Nield [8] argued that the viscous dissipation should re-

main equal to the power of the drag force when the

Brinkman equation is considered, and in the present case

this implies that

U ¼ lu�
2

K
� leffu

� d
2u�

dy�2
: ð13bÞ

On the other hand, Al-Hadhrami et al. [9] proposed a

form which is compatible with an expression derived

from the Navier-Stokes equation for a fluid clear of solid

material, in the case of large Darcy number, and in this

case we have

U ¼ lu�
2

K
þ l

du�

dy�

� �2

: ð13cÞ

In each case the added Brinkman term is OðDaÞ in

comparison with the Darcy term. Consequently, in the

case of small Da the three models are effectively equiv-

alent to each other.

In non-dimensional form this becomes

ûu
oh
on

¼ 1

Pe2
o2h

on2
þ o2h
og2

þ BrDðS; gÞ; ð14Þ

where the Brinkman number Br is defined as

Br ¼ lU �2H 2

kðT �
IN � T �

wÞK
; ð15Þ

and, corresponding to the three models, we have the

alternative expressions

DðS; gÞ ¼ S cosh S � S cosh Sg
S cosh S � sinh S

� �2

; ð16aÞ

DðS; gÞ ¼ S2 cosh Sðcosh S � cosh SgÞ
ðS cosh S � sinh SÞ2

; ð16bÞ

DðS; gÞ ¼ S2ðcosh2 S � 2 cosh S cosh Sg þ cosh 2SgÞ
ðS cosh S � sinh SÞ2

:

ð16cÞ

2.2. Extended Graetz analysis

The problem now is to solve Eq. (14) subject to the

conditions

h1 ¼ 1 at g ¼ 1 for n < 0;

h2 ¼ 0 at g ¼ 1 for n > 0;

ohi

og
¼ 0 at g ¼ 0 for all n; ði ¼ 1; 2Þ;

h1 ¼ h2 at n ¼ 0 for 0 < g < 1;

oh1

on
¼ oh2

on
at n ¼ 0 for 0 < g < 1:

ð17a; b; c; d; eÞ
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Eqs. (17d) and (17e) express the continuities of the

temperature and the heat flux at the entrance section

n ¼ 0. For infinitely large values of jnj, the dimensionless

temperature is the particular solution of the equation

o2hi

og2
¼ �BrDðS; gÞ: ð18Þ

Following Lahjomri et al. [5,6], we use a separation of

variables method to generate the general solution of Eq.

(14) in the upstream and downstream regions satisfying

the conditions (17a,b,c) and (18). This solution can be

represented by

h1ðn; gÞ ¼ 1þ
X1
n¼1

AnfnðgÞ expðk2
nnÞ þ BrF ðS; gÞ for n < 0;

h2ðn; gÞ ¼
X1
n¼1

BngnðgÞ expð�b2
nnÞ þ BrF ðS; gÞ for n > 0;

ð19a; bÞ

where, corresponding to the three models for viscous

dissipation,

F ðS; gÞ ¼
1
2
S2 cosh2 Sð1� g2Þ � cosh Sðcosh S � cosh SgÞ

ðS cosh S � sinh SÞ2
;

ð20bÞ

The kn and bn are eigenvalues associated with the ei-

genfunctions fn and gn, respectively, and the An and Bn

are coefficients to be determined from the matching

condition (17d,e) (see below). The eigenfunctions fn and

gn are the solutions of the following differential equa-

tions:

d2fn
dg2

þ k2
n

k2
n

Pe2

�
� ûuðgÞ

�
fn ¼ 0;

d2gn
dg2

þ b2
n

b2
n

Pe2

�
þ ûuðgÞ

�
gn ¼ 0

ð21a; bÞ

satisfying the boundary conditions

f 0
nð0Þ ¼ 0 and fnð1Þ ¼ 0;

g0nð0Þ ¼ 0 and gnð1Þ ¼ 0:
ð22a; bÞ

From the matching conditions (17d,e), we obtain the

following equations determining the coefficients An and

Bn:

1þ
X1
n¼1

AnfnðgÞ ¼
X1
n¼1

BngnðgÞ;

X1
n¼1

k2
nAnfnðgÞ ¼ �

X1
n¼1

b2
nBngnðgÞ:

ð23a; bÞ

The eigenvalue problem constituted by Eqs. (21a,b) and

(22a,b) is not of the classical Sturm-Liouville type and so

the usual orthogonality formula is not valid. However, as

Lahjomri et al. [5,6] showed, the coefficients can still be

isolated from each other, and are given by the formulas

An ¼
�
Z 1

0

k2
n

Pe2
� ûuðgÞ

� �
fn dg

Z 1

0

2k2
n

Pe2
� ûuðgÞ

� �
f 2
n dg

;

Bn ¼

Z 1

0

b2
n

Pe2
þ ûuðgÞ

� �
gn dg

Z 1

0

2b2
n

Pe2
þ ûuðgÞ

� �
g2
n dg

:

ð24a; bÞ

For large values of the P�eeclet number (Pe ! 1) and

when S ¼ 0 and Br ¼ 0, the solution tends to the clas-

sical Graetz problem without axial conduction, and one

finds that h1ðn; gÞ tends to 1 (a uniform temperature

profile in the upstream region), as expected.

The dimensionless bulk temperature hb;iðnÞ and the

local Nusselt number Nuiðn; gÞ (based on the gap width

2H rather than the hydraulic diameter) for the upstream

and downstream regions are given by

hb;iðnÞ ¼
Z 1

0

ûuðgÞhi dg; ð25Þ

Nui ¼ �
2 ohi

og

h i
g¼1

hb;i � hi½ �g¼1

ði ¼ 1; 2Þ: ð26Þ

In particular, from Eqs. (25), (26), (19b) and (21b), the

local Nusselt number for the downstream region (n > 0)

is given by

F ðS; gÞ ¼
1
4
S2ð1þ 2 cosh2 SÞð1� g2Þ þ 2 cosh Sðcosh Sg � cosh SÞ � 1

8
ðcosh 2Sg � cosh 2SÞ

ðS cosh S � sinh SÞ2
; ð20aÞ

F ðS; gÞ ¼
1
2
S2 cosh2 Sð1� g2Þ þ 2 cosh Sðcosh Sg � cosh SÞ � 1

4
ðcosh 2Sg � cosh 2SÞ

ðS cosh S � sinh SÞ2
: ð20cÞ
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The terms multiplied by Br in Eq. (27) can be evaluated.

For example, when F ðS; gÞ is given by Eq. (20a), one has

F 0ðS; 1Þ ¼ 3S sinh S cosh S � S2 � 2S2 cosh2 S

2ðS cosh S � sinh SÞ2
; ð28Þ

Z 1

0

ûuðgÞF S; gð Þdg

¼ S
S cosh S � sinh S

d0 cosh S
��

� sinh S
S

�

þ d1
cosh S

3

�
� ðS2 þ 2Þ sinh S

S3
þ 2 cosh S

S2

�

þ d2
sinh 2S

4S

�
� 1

2

�

þ d3
sinh 2S cosh S

2S

�
� sinh S

2S
� sinh 3S

6S

��
ð29Þ

where the constants d0; d1; d2; d3 are defined by

d0 ¼
2S2 � 1þ ð4S2 � 14Þ cosh2 S

8ðS cosh S � sinh SÞ2
;

d1 ¼ � S2 þ 2S2 cosh2 S

4ðS cosh S � sinh SÞ2
;

d2 ¼
2 cosh S

ðS cosh S � sinh SÞ2
;

d3 ¼ � 1

8ðS cosh S � sinh SÞ2
:

ð30a; b; c; dÞ

2.3. Calculation procedure

At this stage of their analysis, Lahjomri et al. [5] use a

coordinate transformation to transform the differential

Eqs. (21a,b) into a standard form of Mathieu�s modified

differential equation, but we prefer a more direct ap-

proach, namely using a shooting method to obtain the

eigenvalues and the corresponding eigenfunctions si-

multaneously. (One advantage is that our method can

deal with arbitrary velocity profiles, and not just hy-

perbolic–cosine ones.) We express the second order Eq.

(21a) as a system of two first order ones, by writing

y1 ¼ fn, y2 ¼ f 0
n , where a prime denotes a derivative with

respect to g. Then

y01 ¼ y2;

y02 ¼ k2
n ûu
�

� k2
n

Pe2

�
y1:

ð31a; bÞ

These equations may be solved by a shooting procedure.

Each eigenfunction may be normalized by the require-

ment that it satisfies the condition fnð0Þ ¼ 1. Then we

have

y1ð0Þ ¼ 1; y2ð0Þ ¼ 0: ð32a; bÞ

Starting with an estimate for the value of the nth ei-

genvalue kn, one can step forward from g ¼ 0 to 1 and

vary the value of kn to satisfy the condition y1ð1Þ ¼ 0.

This yields the precise eigenvalue, and the corresponding

function y1ðxÞ is the required eigenfunction fnðgÞ. We

recognize that f 0
nð1Þ is just y2ð1Þ. In a similar fashion one

can calculate bn and gnðgÞ. Once the eigenvalues and

eigenfunctions have been obtained, the coefficients An

and Bn can be obtained by simple numerical integration

of the integrals that are involved, and the solution is

readily completed. (In fact, for our bulk computations

we found it convenient to compute Nu directly from Eqs.

(19a,b), (21a,b) and (26) and to just use Eq. (27) as a

check.) We checked that the shooting procedure lead to

accurate results for the eigenvalues by checking special

limiting cases, such as the standard Graetz problem. We

checked the numerical convergence of our series as we

went along. An indication of the number of modes re-

quired for convergence is given in Fig. 2 of [5]. As ex-

pected, that number of modes increases as n becomes

small. There is a singularity at n ¼ 0 that is dealt with in

the classical Graetz problem by obtaining a special as-

ymptotic solution (the Levêeque solution). We found that

we could handle several hundred modes, and thereby

calculate Nu fairly accurately for quite small values of n.
We therefore judged that the effort of finding a special

asymptotic solution was not warranted.

3. Results and discussion

In this problem there are a large number of para-

meters to vary, and the calculations are time consuming.

We have the ability to calculate the temperature field

throughout the flow region, but in the interests of

brevity we will just present values of the Nusselt num-

ber, and those for the downstream flow region only. (We

quickly see from a simple asymptotic analysis based on

Eq. (14) that, as a result of the inclusion of the axial

conduction term, the temperature changes will be felt

upstream a distance n of order Pe�2.)

First we consider the case in which viscous dissipa-

tion is negligible (Br ¼ 0). Plots of the downstream

Nusselt number are presented in Figs. 2 and 3. Fig. 2 is

for the case Da ¼ 10�5, which is the smallest Darcy

number for which we could make the calculations and

which approximates the case of Darcy (slug) flow. Fig. 3

Nu2ðnÞ ¼
2
P1

n¼1 Bng0nð1Þ expð�b2
nnÞ þ 2BrF 0ðS; 1ÞP1

n¼1 Bn expð�b2
nnÞ ðg0nð1Þ=b

2
nÞ þ ðb2

n=Pe2Þ
R 1

0
gnðgÞdg

h i
� Br

R 1

0
ûuðgÞF ðS; gÞdg

: ð27Þ
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is for the case Da ¼ 1, which is representative of a hy-

perporous medium. It is clear that an increase in Da
results in an increase of the thermally developing Nusselt

number by a comparatively small amount. (The increase

is not surprising, since one would expect that a less re-

strictive medium would lead to greater convection.) The

Nusselt number for large n is the fully developed value.

The value 4.920 for the case Da ¼ 10�5 is close to the

known value 4.935 (p2=2) for the Darcy flow (slug flow)

limit. The value 3.806 for the case Da ¼ 1 is close to the

known value 3.770 for the plane Poisueille flow limit.

In contrast, the developing Nusselt number is

strongly dependent on the value of the P�eeclet number Pe.
The case of large Pe number (Pe ¼ 106) illustrates the

situation where the axial conduction term is negligible.

As one would expect, our results for this case agree with

results based on our previous analysis. In each of Figs. 2

and 3 the plot for Pe ¼ 10 is not far from that for

Pe ¼ 106, but for smaller values of Pe the increase in the

value of the developing Nu (for a fixed value of n) is quite
dramatic, the value varying with 1=Pe approximately.

We now move on to consider the effect of viscous

dissipation. Figs. 4 and 5 are for the case of very large

Pe, where the effect of axial conduction is negligible (and

again for the small Da and large Da cases, respectively).

A feature of considerable interest is that even a small

amount of viscous dissipation (non-zero Br) leads to a

jump in the fully developed Nu2 to a value which is then

independent of Br, and this effect is especially noticeable

in the case of small Darcy number. (The jump is not too

surprising when one observes that the change from zero

Br to non-zero Br changes Eq. (14) from a homogeneous

equation into a non-homogeneous equation, and this is

analogous to changing a free oscillation problem into a

forced oscillation problem. Viscous dissipation provides

a heat source distribution which persists downstream

(unlike the heat flux at walls subject to a constant-

temperature boundary condition, which decays down-

stream) and changes the nature of the fully developed

temperature distribution.) We also see a dramatic dif-

ference between the effect of positive Br and the effect of

Fig. 3. Plots of downstream local Nusselt number versus di-

mensionless axial coordinate, for the case of negligible viscous

dissipation and for large Darcy number, for various values of

the P�eeclet number.

Fig. 4. Plots of downstream local Nusselt number versus di-

mensionless axial coordinate, for the case of negligible axial

conduction (large P�eeclet number) and for small Darcy number,

for various values of the Brinkman number.

Fig. 2. Plots of downstream local Nusselt number versus di-

mensionless axial coordinate, for the case of negligible viscous

dissipation and for small Darcy number, for various values of

the P�eeclet number.
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negative Br. The case Br > 0 corresponds to incoming

fluid being heated at the walls. The viscous dissipation

produces a (generally non-uniform) distribution of posi-

tive heat sources, and this reinforces the heating effect as

the fluid moves downstream. As n increases the value of

the Nusselt number passes through a minimum. For

very large values of Br the value of Nu changes only

slowly with n. The case Br < 0 corresponds to incoming

fluid being cooled at the walls, and this cooling at the

walls is opposed by the heating due to viscous dissipa-

tion in the bulk of the fluid. This opposition is particu-

larly dramatic for the case Br ¼ �1, for which the

difference between the wall temperature and the bulk

temperature changes sign at some value of n. That

means that the Nusselt number based on that difference

becomes quantitatively meaningless, and for that reason

we have not plotted in our figures any curve for that

value of Br. For Br ¼ �10 or less, the plots for Nu2 are

regular and exhibit a maximum value at some value of n.
In Figs. 6 and 7, and again in Figs. 8 and 9 we present

companions to Figs. 4 and 5, now for the cases of Pe ¼ 10

and Pe ¼ 1, respectively. Figs. 4 and 5 as a pair do not

differ much from Figs. 6 and 7, and this drives home the

point that when Pe ¼ 10 the effect of axial conduction is

not dramatically significant. When Pe ¼ 1, the effect of

axial conduction is more dramatic. It results in an in-

crease in the variation of Nu2 as the flow develops. In

particular, it results in Nu2 becoming negative for small

Fig. 6. As for Fig. 4, but with Pe ¼ 10.

Fig. 5. Plots of downstream local Nusselt number versus di-

mensionless axial coordinate, for the case of negligible axial

conduction (large P�eeclet number) and for large Darcy number,

for various values of the Brinkman number.

Fig. 7. As for Fig. 5, but with Pe ¼ 10.

Fig. 8. As for Fig. 4, but with Pe ¼ 1.
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values of n when Br is moderately large and negative. In

the circumstances of Fig. 9 (Pe ¼ 1, Da ¼ 10) the jump in

the value of the fully developed Nusselt number as Br
goes from zero to a non-zero value is very small.

In Fig. 10 (together with Fig. 5) we present a com-

parison of results based on the various models of viscous

dissipation, for a case in which the Darcy number is

large, and for which the effect of axial conduction is

negligible. The most dramatic difference between the

models is in the value of the fully developed Nusselt

number. This number has the values 3.860, 4.160, 6.641,

for the respective models.

The analysis used in this paper has an important

limitation. The ansatz assumed in writing down Eq.

(19a,b) implies that temperature at a great distance

downstream is independent of the axial coordinate. This

assumption is a sensible one for a discussion of thermally

developing flow. It is also a sensible assumption to apply

at the exit cross-section when using numerical modeling.

However, it is not a good assumption when considering

the limit as the thermal convection becomes fully devel-

oped. In fact, it violates the First Law of Thermody-

namics when the viscous dissipation is not zero. Thus the

jump in the value of the fully developed Nusselt number

as Br goes from zero to a non-zero value should be re-

garded as an artifact of the mathematical modeling.

Likewise, not much should be read into the fact that

the fully developed Nusselt number for non-zero Br is

independent of Pe (compare Figs. 4, 6, 8 and also

Figs. 5, 7, 9).

4. Conclusions

We have investigated the effect of adding an axial

conduction term and a viscous dissipation term to the

thermal energy equation for the problem of forced

convection in a parallel-plate channel, with the temper-

ature held constant at the walls. In the absence of vis-

cous dissipation, the developing Nusselt number varies

little with the Darcy number but quite dramatically with

the P�eeclet number (increasing as Pe decreases). The effect

of viscous dissipation has a significant effect on the de-

veloping Nusselt number.

Fig. 9. As for Fig. 5, but with Pe ¼ 1.

Fig. 10. Comparison of different models for viscous dissipation: (a) model based on power of drag force (Nield [8]), (b) model based on

compatibility with a clear fluid (Al-Hadhrami et al. [9]). Other parameters are as in Fig. 5, which is based on a model in which the

contribution of the Brinkman term to the viscous dissipation is ignored in comparison to the contribution of the Darcy term.
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